The Occupy Mars Learning Adventure

Training Jr. Astronauts, Scientists & Engineers

Leave a comment

International Art Contest: We need students to enter this great contest.

Mars Society to Hold Int’l Student Mars Art Contest

The Mars Society announced today that it is sponsoring a Student Mars Art (SMArt) Contest, inviting youth from around the world to depict the human future on the planet Mars. Young artists from grades 4 through 12 are invited to submit up to three works of art each, illustrating any part of the human future on the Red Planet, including the first landing, human field exploration, operations at an early Mars base, the building of the first Martian cities, terraforming the Red Planet and other related human settlement concepts.

The SMArt Contest will be divided into three categories: Upper Elementary (grades 4-6), Junior High (grades 7-9), and High School (Grades 10-12). Cash prizes of $1,000, $500 and $250, as well as trophies, will be given out to the first, second and third place winners of each section. There will also be certificates of honorable mention for those artists who don’t finish in the top three, but whose work is nevertheless judged to be particularly meritorious.

The winning works of art will be posted on the Mars Society web site and may also be published as part of a special book about Mars art. In addition, winners will be invited to come to the 20th Annual International Mars Society Convention at the University of California, Irvine September 7-10, 2017 to display and talk about their art.

Mars art will consist of still images, which may be composed by traditional methods, such as pencil, charcoal, watercolors or paint, or by computerized means. Works of art must be submitted via a special online form ( in either PDF or JPEG format with a 500 MB limit. The deadline for submissions is May 31, 2017, 5:00 pm MST. By submitting art to the contest, participating students grant the Mars Society non-exclusive rights to publish the images on its web site or in Kindle paper book form.

Speaking about the SMArt Contest, Mars Society President Dr. Robert Zubrin said, “The imagination of youth looks to the future. By holding the SMArt Contest, we are inviting young people from all over the world to use art to make visible the things they can see with their minds that the rest of us have yet to see with our own eyes. Show us the future, kids. From imagination comes reality. If we can see it, we can make it.”

Questions about the Mars Society’s SMArt Contest can be submitted to:

Leave a comment

Getting Ready to Occupy Mars

Mission Summary – Crew 174

Mars Desert Research Station End of Mission Summary

Crew 174 – Team PLANETEERS


Team PLANETEERS (All Indian Crew):

Commander:  Mamatha Maheshwarappa

Executive Officer/Crew Scientist:  Saroj Kumar

Engineer/Journalist:  Arpan Vasanth

GreenHab Officer:  Sneha Velayudhan

Crew Health & Safety Officer/Geologist:  Sai Arun Dharmik

Success occurs when your dreams get bigger than your excuses


The Solar System is a tiny drop in our endless cosmic sea (Universe). Within our solar system, a very few planets host an environment suitable for some life forms to exist. The closest one being Mars after the Earth, following the success of rovers such as Spirit, Opportunity, Curiosity and several space probes, the human understanding of the planet has reached new levels. The next important aspect is to find out if there exist any life forms or if the planet had hosted any life in the past. Although the rovers send out a lot of information about the planet, so far humans have not found anything substantial. With advancements in science and technology by organizations such as NASA, ESA, ISRO, CNSA along with private industries such as SpaceX manned mission to Mars seems to be within reach in a few years. To carry out successful missions humans will have to develop key tactics to cope up extreme conditions, confined spaces and limited resources. Team Planeteers (MDRS Crew 174) is the first all Indian crew consisting of five young aspirants from different domain who have come together to embark on a special mission in order to develop such key tactics. The crew was successful in executing the planned experiments. The key for their success is the temperament and dedication shown by each individual and fixing small issues immediately. Since all the members were of same origin, food and cultural aspects was an advantage. Going forward the team is planning out for outreach activities. As a part of QinetiQ Space UK, Mamatha will be involved in outreach, education and media activities (TeenTech & STEMNET). Similarly, Saroj and Sneha will be conducting STEM outreach activities at Unversity of Alabama and Rochester Institute of Technology respectively.

Figure 1 Team Planeteers inside the MDRS Hab

Research conducted at MDRS by Crew 174:


  1. Characterizing the transference of Human Commensal Bacteria and Developing Zoning Methodology for Planetary Protection

The first part of this research aims at using metagenomics analysis to assess the degree to which human associated (commensal) bacteria could potentially contaminate Mars during a crewed mission to the surface. This involved collection of environmental soil samples during the first week of the mission from outside the MDRS airlock door, at MDRS airlock door and at increasing distances from the habitat (including a presumably uncontaminated site) in order to characterise transference of human commensal bacteria into the environment and swabbing of interior surfaces carried out towards the end of the mission within the MDRS habitat to characterize the commensal biota likely to be present in a crewed Mars mission. In the interests of astrobiology, however, if microbial life is discovered on the Martian surface during a crewed mission, or at any point after a crewed mission, it will be crucial to be able to reliably distinguish these detected cells from the microbes potentially delivered by the human presence.

The second part of the research aims at testing the hypothesis that human-associated microbial contamination will attenuate with increasing distance from the Hab, thus producing a natural zoning.  The previous studies hypothesize that there may be relatively greater contamination along directions of the prevailing wind because windborne particles or particle aggregates allow attachment of microbes and help to shelter them against various environmental challenges, e.g. desiccation, ultraviolet light, etc. Efforts are afoot to try to develop a concept of zones around a base where the inner, highest contamination zone is surrounded by zones of diminishing levels of contamination occur and in which greater Planetary Protection stringency must be enforced (Criswell et al 2005).  As part of that concept, an understanding of what the natural rate of microbial contamination propagation will be is essential.

a. Sample collection process:

Two sets of samples were collected as the analysis will be carried out at two different stages.

i. Samples of the soil outside the MDRS were collected aseptically into sterile Falcon tubes. Sampling sites included immediately outside the habitat air lock (with presumably the highest level of human-associated bacteria from the crew quarters), at increasing distances from the airlock along a common EVA route (to track decrease in transference with distance), and at a more remote site that ideally has not previously been visited by an EVA (to provide the negative control of background microbiota in the environment).

Figure 2 Soil Samples collected at increasing distances from the Airlock


ii. Various surfaces within the crew quarters were swabbed using a standard sterile swab kit to collect microbes present from the course of normal human habitation. These included door handles, walls, table surface, airlock handles, staircase, working table, computer. This did not expose the science team to additional infection risks (such as not swabbing toilets).

Figure 3 (a) Sterile Swab Kit (b) Internal swab collection (working table)

Sampling locations within the habitat and soil sampling sites during EVA were recorded by photographs and written notes. After collection, the samples were refrigerated at the MDRS Science lab, and then returned with the crew to London for storage and analysis. This is analogous to medical samples being collected from ISS astronauts and returned to Earth for lab analysis. The molecular biology sample analysis and data interpretation, including all the metagenomic analyses to identify bacterial strains present, will be conducted by Lewis Dartnell in collaboration with John Ward. The collaboration agreement is already in place and lab space and resources confirmed. The analysis is carried out in two different stages:


a. Stage 1 Analysis:

The first set of samples will be tested using off-the-shelf simple tests for the presence or absence of human associated microbes, namely coliforms.  These are simple to use and give a yes/no answer, so plots will be made of yes/no results with distance from the hab in different directions.  This could be correlated with prevailing wind directions and/or to show common human pathways from the hab versus directions in which people typically don’t go.

b. Stage 2 Analysis:

The second set of samples (internal swabs) will not be cultured or otherwise processed back on Earth (as culturing of human commensurate and environmental microorganisms could present a biological hazard to the MDRS astronauts). All sampling materials and storage containers were provided by the study, and thus will require no consumables or other resources from the MDRS. All sample collection pots and sampling materials will be removed by the study scientists, and the sampling process itself (small soil samples and surface swabs) will not impact the MDRS habitat or its natural environment.


  1. Zoning and sample collection Protocols for Planetary Protection


Planetary protection is one of the major subjects that require immediate attention before humans travel to Mars and beyond. MDRS being one of the closest analogues on Earth with respect to dry environment on Mars was the best site to perform and simulate issues related to planetary protection. Our work on planetary protection was to simulate zoning protocol to be used to manage relative degrees of acceptable contamination surrounding MDRS and implementation of sample protocols while at EVA’s for soil sample collection, geological study and during hab support activities etc.


a. Zoning protocols for crew exploration around MDRS

During the mission, we extensively studied the zoning protocol in and around the hab and how contamination issues on Mars can be restricted.  On the first day on ‘Mars’ we used the geographical map of MDRS exploration area to formulate and characterize zones around the hab and the strategy for sample collection.

i. Zone: 1 (Area within Hab) – This area is believed to be the most contaminated with the human microbes.

ii. Zone 2 (About 20 meters from the hab) – This is the area where most of the hab support systems and rovers are parked. This zone is supposed to have less microbial contamination than hab but higher than Zone 3 and 4.

iii. Zone 3 (Beyond 20 meters but within 300 meters around the hab) – This area is considered to have regular human presence during an EVA. Soil samples of Zone 2a and 2b were collected for future analysis in lab to study human microbial contamination.

iv. Zone 4 (Special Region) – This area was considered to have insufficient remote sensing data to determine the level of biological potential. This area was marked as no EVA zone and can only be studied in detail by remote sensing data using satellites or drones.


b. Sample collection protocols

The crew studied the sample collection protocol requirements for all the activities such as soil sample collection, geological study and during the operations of hab support systems etc., this was to avoid forward and back contamination.  The protocols were planned to be initiated from the time a crew member leaves the airlock for EVA and until he/she returns from the EVA to Hab. During the EVA, the crew noted every experiment procedure and made sure there was no breach in spacesuits and no human microbial contamination during soil collection. The tools used for the soil collection were required to be completely cleaned and sterilized. The study of rocks on site during an EVA was one of the major challenges where it was realized that special tools were required to pick the rock samples without getting them exposed to spacesuit gloves. Using only gloves to pick rock samples could also rupture the spacesuits and thus there could be a decompression issue. Even with a detailed geological exploration map of MDRS and high resolution satellite imagery, it was noted that the use of drones can drastically reduce the human EVAs and lots of geological and terrain information can be obtained in a shot span of time. This step would heavily reduce the human EVA and thereby contamination issues to special regions where there could be a possibility of having a biological activity. Water, a major carrier of human microbes is proposed to be within the structures of hab. During the simulation, the crew made sure that there was no water spillage outside the hab.


  1. Development of New Techniques to Enhance Plant Growth in a Controlled Environment

A crewed mission to the Mars demands sufficient food supplies during the mission. Thus cultivation of plants and crops play an important role to create a habitat on Mars. There are some factors to be considered before cultivating crops on the Martian surface. First, the planet’s position in the solar system, Mars receives about 2/3rd of sunlight as compared to the Earth that plays a vital role in crop cultivation. Second, the type of soil used for crop cultivation should to be rich in various nutrients. Since the MDRS site is considered as one of the best analogue sites on Earth to simulate Mars environment, the experimental results of plant growth at MDRS was considered for this research. This research aims at growing fenugreek (crop that is rich in nutrients and grows within the mission time) to determine the effect of Vitamin D on the growth.

At MDRS, the fenugreek seeds were allowed to germinate for 2 days. In the mean-time, an EVA was carried out to collect soil from different parts on ‘Mars’. The soil was collected based on the colour and texture. Five types of soil, white (01), red (02), clay (03) coloured soil, course grey soil (04) and sand from river bed (05) were collected. Two set of experiment pots were made as shown in the Figure 4. Each had 15 pots, 10 pots with Earth soil (ES) labelled with different levels of Vitamin D (0- 0.9) and 5 pots of Mars soil (MS) labelled according to the area of the soil collected (0-5). One set of 15 pots was placed in the Green hab and the other in the controlled environment (under the Misian Mars lamp) after planting the well germinated seeds. The plants were watered twice a day in order to maintain the moisture in the soil.

Figure 4 Experimental Setup with Earth and ‘Mars’ Soil

The temperature and humidity levels were monitored twice a day throughout the mission both in the green hab and the controlled environment (Misian Mars Lamp). It was noted that there was a steep increase in the temperature in the green hab as the outside temperature was high that inturn decreased the humidity in the green hab drastically. The situation was managed by switching on the cooler and then by monitoring the heater thermostat. The plants were watered with specific measurement of Vitamin D every day. The experiment was successfully completed by monitoring the growth regularly, it is evident that humidity and temperature impacts the growth of plants. The plants in the green hab showed more growth of primary root than the secondary, the leaves were normal in colour and growth. In the controlled environment, the root growth was fast, the plants developed many secondary roots in few days. The plants looked healthy, the leaves were dark green and bigger than the ones in the green hab as seen in Figure 5.

Figure 5 Plant growth in (a) Misian Mars Lamp (b) GreenHab

In conclusion, the graphs were plotted for the root growth for the Earth Soil with Vitamin D in the green hab and the controlled environment from Sol 08 to Sol 13. The graphs indicated that the low level of Vitamin D (0.1) enhances root growth in the green hab. Under misian Mars lamp, the growth rate is high for ES 0 (without Vitamin D).   Readings tabulated for the Mars soil was plotted on daily basis but, after few days it was noted that there was neglibile growth in the Mars soil. The graphs plotted for few days are as shown in the Figure 6.

Figure 6 Root growth of seedlings (a) Misian Mars Lamp (b) GreenHab


  1. Study of magnetic susceptibility of the rocks and their comparison


The primary objective was to study the magnetic susceptibility and magnetic minerals of the rock samples collected and compare them with multi-spectral remote sensing data back in the lab. MDRS contains a range of Mars analogue features relevant for geological studies. It contains a series of sediments derived from weathering and erosion from marine to fluvial and lacustrine deposits containing also volcanic ashes (Foing et al. 2011). With the preliminary understanding of the MDRS geographical exploration area and identification of potential targets, the lithology can help us decipher the structural history of the region, with understanding of genesis of such rock types and aid exploration efforts. The previous studies done at MDRS reveals that the magnetic susceptibility did not vary significantly near the Hab. Hence, the locations of various geological formations far away from the hab were selected to study the distribution of magnetic minerals. The selected locations for the same were sedimentary outcrops, cattle grid, burpee dinosaur quarry, widow’s peak and near the Motherload of concretions.

We found layers of horizontally bedded sandstone and conglomerates, sandstones and siltstones. Some of them seem to have inverse grading which could have been created by the debris flow. Gypsum and lichens were spotted around the area of sedimentary crops. In the next visit to Motherload of concretions, we have seen a variety of lichens: yellow, black, orange and grey. And in the Cattle grid region, colors of mudstone and conglomerates bands of rich cream, brown, yellow and red were found. The basalt samples were collected from the gravel in the cattle grid region and from the URC north site (porphyr) to be studied in the lab. Near the widow’s peak, shales were found along with gypsum shining bright, distributed around that area. Most of the region was covered mostly with loose soil. The locations of all the samples collected from different regions were marked with the help of GPS. The magnetic susceptibility of rock samples were measured and documented them using the magnetometer in the science lab. Inspection of samples was possible with the microscope at the science dome, with 10X zoom as seen in Figure 4. They need to be studied in thin sections for better understanding and will be done on Earth under the guidance of specialists.

Figure 7 (a) Porphyr under microscope (b) Siltstone under the microscope


  1. Drone Experiment

‘Mars’ has a harsh environment that risks Extra Vehicular Activity (EVA). The main objectives of the drone experiment were:

a. To ease EVAs by understanding the scenario of a region that is hard to access by rover/ATV.

b. To simulate the application of drone in search of a crew member during an emergency situation and during loss of communication.

c. Video making and photography for outreach activities.

The first objective to make use of drone in isolated regions was successfully executed on Sol 07. Since it was the first trial, the drone was operated in beginner’s mode restricting the field of operation to 30m range. The crew was looking out for soil samples, when confronted by a medium size hill the drone was sent out to check for soil sample availability on the other side. The region looked to be same and it was easier for the crew to take a decision to abort the mission and move to a different location.

Execution date:                Sol 07 (Earth date: 02/05/2017)

GPS Satellites:   13

Flight mode:                     Beginner’s mode of max 62 FT altitude and within 30m range.


The second objective was to simulate an emergency situation when one of the crew lost communication with other member during EVAs. The beginner mode range was too less and hence the drone was operated in advanced mode to search the missing crew member. The mission was successful in identifying the crew member.

Execution:         Sol 11 (Earth date: 02/09/2017)

GPS Satellites:   14

Flight mode:                     Advanced mode with 121 FT altitude and 500m range.


Figure 8 Drone Searching a Crew Member


Several photographs/videos were captured as per the planned outreach activity.

Leave a comment

Mars Crew 173 Reporting

Kids Talk Radio Science is following the work of Mars Crew 173 and we are using the information to help us in our STEAM++ project-based learning.   This is a wonderful resource for helping our team to advance our work on the Occupy Mars Learning Adventures. and
MDRS Crew 173 Issues Final Summary Report

The following is the final report of Mars Desert Research StationCrew 173 (Team Prima, a multi-national team of scientists and researchers).  A complete review of this year’s MDRS activities will be presented at the 20th Annual International Mars Society Convention, to be held September 7-10, 2017 at the University of California Irvine. The call for papers for the conference will be posted soon at:

MDRS Mission Summary
Crew 173 (Team PRIMA)

Commander/Astrobiologist: Michaela Musilova (Slovakia)
Executive Officer: Arnau Pons Lorente (Spain)
Engineer/ Astronomer: Idriss Sisaid (France/Morocco)
GreenHab Officer/Astrobiologist: Richard Blake (Australia)
Crew Artist/Journalist: Niamh Shaw (Ireland)
Crew Health & Safety Officer/Geologist: Roy Naor (Israel)

Facebook: @marsmission173
Twitter: @MarsCrew173

Team PRIMA is made up of highly qualified scientists, engineers, artists and leadership experts from all over the world. We all first met during the International Space University (ISU)’s Space Studies Program. The crew was successful in undertaking a wide range of research projects and outreach activities at the Mars Desert Research Station (MDRS) during their mission there, detailed below. One of the keys to the smooth running of the mission and projects were great group dynamics, and the multicultural atmosphere the crew nurtured. Amongst other things, we regularly organized “culture nights”, in ISU’s spirit, during which the different international traditions and cuisines of the crew members were presented. Another thing, which bonded the whole crew, was our passion for reaching out to the public and inspiring others to pursue their dreams, just like the crew is doing. They believe this mission alone helped raise the awareness about the importance of the space sector in all of the crew members’ countries.

Research Conducted at MDRS

3D printing of bricks through In Situ Resource Utilization

The aim of this project was to develop and test 3d printed blocks, which can be used to build multifunctional buildings on Mars. The shape of the blocks was optimized to withstand different types of heavy loads, contain water (for daily use by astronauts) and to provide extra-radiation shielding for the astronauts. Furthermore, the idea was to use in situ resources to make the blocks, therefore minimizing the amount of material that would need to be transported to Mars.

The first week at MDRS, we encountered several issues with the 3D printer present here (including the cold temperatures at night for example), which didn’t allow us to print bricks but we managed to print 5 bricks over the last few days. Every brick took 17h on average to print. The outer shell of the brick was printed using PLA filament (plastic). For future studies, we suggest laser sintering technology to simulate 3D printing using Martian soil. The printed blocks are, however, a great success as the interlocking system was fully functional. With the crew geologist Roy Naor we evaluated the different types of soil that can be used within the brick to strengthen it. Filling the blocks with appropriate soil was also successful and the process was fairly easy (less than 1min per block). We then built a small structure at MDRS during an EVA, in order to prepare for the next iteration of the proof of concept.

GreenHab related projects

The work in the GreenHab during this has mission comprised of three main experiments:

The temperature fluctuation was measured across the day, from a range of locations: inside the GreenHab, inside on the ground floor of the main Hab, outside, and, inside the grow tent (which was initially located within the GreenHab).

Due to the extremely high temperatures in the growth tent (50◦C ~120◦F), the grow tent was moved to the lower level of the main Hab. With the grow tent inside the main Hab, its temperature hardly fluctuated at all. With ~65% humidity, it now represents an ideal seed germination area. The GreenHab still gets quite hot during the day, getting to ~40◦C (~105◦F), but with no wind and regular watering, the plants thrive. Similarly, with a working heater, the night- time temperatures now only get as low as ~17◦C (~63◦F), which is a perfectly adequate temperature to keep edible plants happy.

This involved two similar experiments designed by universities in the Czech Republic, and brought by the crew commander, Michaela Musilova. The first was a corn experiment, designed by researchers at the Masaryk University, to be used as a base line for a future experiment testing the effects of heavy metals on the growth of corn. The experiment at the MDRS involved measuring the height of corn seedlings each day as well as recording the number of leaves each plant had.

The second experiment saw six different crops sown in pots with seed densities ranging from 1 to 12 seeds per 4 cm2. Some seedlings have already sprouted but it is still too early to gather meaningful results. This experiment is to be followed up by researchers at Mendel University.

Both projects are to be continued by future crews at MDRS – we will leave them appropriate instructions for this. Hopefully, in this way, we will be able to engage multiple crews in this international project.

This experiment was borne of the need for more soil to grow plants in. Samples of soil were collected from geological locations in the surroundings of MDRS. These samples were tested for their pH, as well as salinity. With kitchen and garden scraps forming compost, this could improve the regolith to the point it could be used to grow more crops in the future. Hopefully, this could reduce dependence on outside sources to bring in more potting mix, and more fully recreate a Martian simulation. Unfortunately, the instruments to measure pH and salinity at the MDRS were insufficient for this, and thus this experiment warrants further investigation.

Chemical and isotopic fingerprints of MDRS carbonates

The potential of extraterrestrial life on Mars is well connected to the history, and distribution of water and carbon on the planet. Carbonate minerals are seen as powerful tools with which to explore these fundamental relationships, as they are intimately tied to both the water and the inorganic carbon cycle. The carbonate analysis work at MDRS concentrated on locating and sampling carbonate minerals in the topsoil and exhumed formations in the Martian-like environment. After an initial study of the geology of the area, carbonates were sampled and tested on site, using HCl 5% to test for a reaction of the rocks with the acid. The verified assemblages were then brought back to MDRS for further testing. The sampling was performed in a very rigorous way, documented meticulously, while keeping the work analogous to what extraterrestrial field work would be like one day.

The samples will be sent for analysis of the carbonates’ chemical and isotopic fingerprint at the Weizmann Institute of Science (Israel) (including crystal separation, mineral/chemical identification (XRD, EDS, CL), textural analysis (SEM, micro-CT), isotopic analysis (SIMS)). The results will be added to their datasets with the intention of publishing them in academic journals.

Art-Outreach project

The aim of this project was to capture the public’s interest in Mars, MDRS and space:
+ By telling the real-time human story of our mission pre-, during- and post-mission,
+ To inspire the younger generation to pursue STEAM education and realize that everyone can play a part in the exploration of space
+ To raise awareness of the importance of analog missions, specifically MDRS and the opportunity for non-Space agency individuals to play their part in Human Space Exploration.

We believe that we accomplished these aims: together we documented our entire experience here at MDRS using audio, video, time-lapse, 360 cameras and photography. We began by making videos pre-mission to reflect the time and effort in preparation for our mission. During mission, we captured every EVA in photography and video and conducted time lapse videos of our experiments, and daily life during our mission. We will continue to record our experience post-mission to capture further reflections about our experience at MDRS. During our mission, we shared a summary of our daily activities on social media and on blogposts in our native countries using this content. We also created short 90 second tutorial videos for school children to inspire them to consider careers in STEM, especially in the space industry, to be posted to our YouTube channel post-mission.  We also worked with a number of companies, research institutions and journalists/media organizations around the world. Awareness of Mars and MDRS has most definitely been achieved, and we all return home to requests for further interviews and requests from schools to speak about our experience here.

Israeli outreach & educational projects

One of our outreach projects involved a challenge for high school students in Israel to design a set of small experiments for the team to conduct under simulation. They were: 1) Detecting variances in rock type near MDRS (involving sampling and examining the geological characteristics of each of the formations present here); 2) Testing the strength of the 3D printed bricks as a function of the different rock material they will be filled with (thus testing the variance in their strength properties ); and testing the effect of repetitive EVAs on the time it takes the crew to prepare for it (timing and documenting the process of putting EVA equipment on). All crew members took part in this research lead by Roy Naor. The projects yielded interesting results. For instance, there was a great improvement in the EVA preparation time (decreasing from 30 minutes to 15 minutes throughout the mission). This projects already got a lot of media coverage and the results be published in the Israeli media after the mission.

“Mission to Mars” competition and research project

Michaela Musilova organized a competition for high school and university students in Slovakia called Mission to Mars (Misia Mars), together with Slovenske Elektrarne. The aim of the competition was to motivate young people to design an experiment worthy of being taken and performed on Mars, whether real or simulated at MDRS. Students from all over Slovakia participated in the competition in 2016. The winning experiment has been brought to MDRS with Crew 173 (Figure 5). It is focused on enhancing the speed and yield of spinach growth under simulated Martian conditions. Michaela communicated regularly with her students in Slovakia, who remotely advised her on how to perform it. The experiment was very successful, as the spinach grew much faster than the spinach grown in the GreenHab. It also yielded enough leaves to treat the crew to a mini spinach salad on their last evening at MDRS. All the follow-up analyses will be performed in the students’ school in Detva, Slovakia. As per the other outreach activities, this project attracted a lot of attention from the media and was followed by many schools throughout Slovakia.

“Space food” or food for extreme conditions

A practical way of eating is the key to long-term expeditions in extreme conditions on Earth and in future long-duration missions in space. Food will have to be compact (for easy transportation), full of the most important nutrients (for maintaining good crew health and performance), but also diverse for all the different human senses. Hence, a project focusing on food for extreme conditions (nicknamed “space food”) has been prepared by the Slovak Organization for Space Activities (SOSA) and several Slovak research institutes and companies. The aim of the work at MDRS was to monitor the changes in the quality of the space food products and their nutritional content, rather than to test the products on the crew. In particular, the effects of the different extreme conditions (e.g. varying temperatures) on the food were studied for health and safety reasons. The project went very well and most of the products managed to survive the simulated Martian conditions. Further analyses will be performed at the Slovak institutes upon the return of the products to Slovakia, with the aim of publishing the data in academic publications. Future plans include using the data in the food industry, and preparing products for athletes and even the military, even one day for the space sector.

For further information about the Mars Society, please visit our website at